Задания
Версия для печати и копирования в MS Word

Дано урав­не­ние  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­си­нус в квад­ра­те левая круг­лая скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка конец дроби плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: синус x конец дроби минус 6=0.

а)  Ре­ши­те урав­не­ние.

б)  Най­ди­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;3 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние

 дробь: чис­ли­тель: 5, зна­ме­на­тель: синус в квад­ра­те x конец дроби плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: синус x конец дроби минус 6=0 рав­но­силь­но 6 синус в квад­ра­те x минус 7 синус x минус 5=0

 синус x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби или  синус x= дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби (вто­рое не­воз­мож­но), от­ку­да x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k;x= минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k.

 

б)  На ука­зан­ном от­рез­ке лежит  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби .

 

 

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k;k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 235
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус, Урав­не­ния, ра­ци­о­наль­ные от­но­си­тель­но три­го­но­мет­ри­че­ских функ­ций
Методы алгебры: Фор­му­лы при­ве­де­ния