Задания
Версия для печати и копирования в MS Word
Тип Д12 C3 № 521434
i

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка 3 боль­ше или равно 2,5.

Спрятать решение

Ре­ше­ние.

Пусть t= ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка боль­ше 0, не­ра­вен­ство при­мет вид t плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше или равно 2,5, от­ку­да t при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 2; бес­ко­неч­ность пра­вая круг­лая скоб­ка

 

Вер­нем­ся к ис­ход­ной пе­ре­мен­ной: 2 в сте­пе­ни x плюс 1 при­над­ле­жит левая круг­лая скоб­ка 1; ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; бес­ко­неч­ность пра­вая круг­лая скоб­ка , тогда x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; бес­ко­неч­ность пра­вая круг­лая скоб­ка .

 

Ответ:  левая круг­лая скоб­ка минус бес­ко­неч­ность ; ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ.3
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих не­ра­вен­ствах ис­ход­ной си­сте­мы.2
Обос­но­ван­но по­лу­чен вер­ный ответ в одном не­ра­вен­стве ис­ход­ной си­сте­мы.

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния си­сте­мы не­ра­венств.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл3
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 210
Классификатор алгебры: Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию, Не­ра­вен­ства сме­шан­но­го типа
Методы алгебры: Вве­де­ние за­ме­ны
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.3 По­ка­за­тель­ные не­ра­вен­ства