В прямоугольнике АВСD на стороне ВС отмечена точка К так, что ВК = 2СК.
а) Докажите, что ВD делит площадь треугольника АКС в отношении 3 : 7.
б) Пусть М — точка пересечения АК и BD, Р — точка пересечения DK и АС. Найдите длину
отрезка МР, если АВ = 8, ВС = 6.
а) Треугольники BKM и DAM подобны с коэффициентом
поэтому
Обозначим за O точку пересечения диагоналей прямоугольника. Тогда откуда и следует утверждение п. а).
б) Введем координаты с началом в точке A и осями x, y направленными вдоль AD, AB соответственно.
Тогда координаты точек будут (поскольку KP : PD = 1 : 3 по соображениям, аналогичным п. а)) и расстояние составит
Ответ: б)

