Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N — середины рёбер AA1 и A1C1 соответственно.
а) Докажите, что прямые BM и MN перпендикулярны.
б) Найдите угол между плоскостями BMN и ABB1.
а) Пусть точка H — середина AC.
Тогда
Вместе с тем,
а тогда по теореме, обратной теореме Пифагора, треугольник BMN является прямоугольным с прямым углом M.
б) Проведём перпендикуляр NP к прямой A1B1.
Тогда NP ⊥ A1B1 и NP ⊥ A1A. Следовательно, NP ⊥ ABB1. Поэтому MP — проекция MN на плоскость ABB1.
Прямая BM перпендикулярна MN, тогда по теореме о трёх перпендикулярах BM ⊥ MP. Следовательно, угол NMP — линейный угол искомого угла.
Длина NP равна половине высоты треугольника A1B1C1, то есть
Поэтому
Следовательно,
Ответ: б)
----------
Дублирует задание 510019.

