Мистер Джонсон по случаю своего тридцатилетия открыл 1 октября 2010 года в банке счёт, на который он ежегодно кладет 6000 рублей. По условиям вклада банк ежегодно начисляет 30% на сумму, находящуюся на счёте. Через 7 лет 1 октября 2017 года октября, следуя примеру мистера Джонсона, мистер Браун по случаю своего тридцатилетия тоже открыл в банке счет, на который ежегодно кладёт по 13 800 рублей, а банк начисляет 69% в год. В каком году после очередного пополнения суммы вкладов мистера Джонсона и мистера Брауна сравняются, если деньги со счетов не снимают?
Через n лет 1 октября на первом счёте будет сумма (суммируем n + 1 член геометрической прогрессии)
В это же время на втором счёте будет сумма
Приравняем эти суммы и решим полученное уравнение:
Таким образом, суммы на счетах сравняются через 13 лет после открытия первого вклада, то есть в 2023 году.
Ответ: 2023.

