СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 517563

Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.

а) Докажите, что прямые CA1 и AB1 перпендикулярны.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.

Решение.

а) Заметим, что B1C1C1A1 как катеты прямоугольного треугольника, и B1C1 ⊥ C1C, поскольку призма прямая. Тогда по признаку перпендикулярности прямой и плоскости Кроме того, как диагонали квадрата. AB1 − наклонная, AC1 − ее проекция на плоскость ACA1, − прямая в плоскости , перпендикулярная проекции. Тогда по теореме о трёх перпендикулярах что и требовалось доказать.

б) Пусть M − середина AC1. Тогда искомое расстояние равно расстоянию от точки M до прямой AB1, поскольку прямая A1C перпендикулярна плоскости AB1C1. Это расстояние равно половине высоты прямоугольного треугольника AB1C1, проведённой к гипотенузе, то есть

Ответ:б)

Источник: Задания 14 (C2) ЕГЭ 2017
Методы геометрии: Теорема о трёх перпендикулярах
Классификатор стереометрии: Перпендикулярность прямых, Правильная треугольная призма, Расстояние между скрещивающимися прямыми
Спрятать решение · · Видеокурс · Курс Д. Д. Гущина ·
peresl 27.01.2019 20:54

Здравствуйте. В решении нельзя применить теорему о трех перпендикулярах, так как прямая А1С не проходит через основание наклонной АВ1 точку А.

Служба поддержки

Разные формулировки есть.