СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 514243

В кубе ABCDA1B1C1D1 все рёбра равны 7. На его ребре BB1 отмечена точка K так. что KB = 4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 1 : 3, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.

Решение.

а) Проведём через точку K прямую, параллельную BD1. Пусть эта прямая пересекает плоскость грани A1B1C1D1 в точке L. Прямая KL лежит в плоскости BB1D1, значит, точка L лежит на диагонали B1D1. Более того,

Прямая C1L пересекает ребро A1B1 в точке P, принадлежащей плоскости α.

Треугольники B1LP и D1LC1 подобны, поэтому

Значит,

б) Объём куба ABCDA1B1C1D1 равен 343. Объём тетраэдра PKC1B1 равен одной шестой произведения его измерений:

Значит, объём оставшейся части равен

 

Ответ: б)


Аналоги к заданию № 509202: 514243 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2015