Окружность проходит через вершину С прямоугольника ABCD, касается стороны AB, пересекает сторону CD в точке M и касается стороны AD в точке K.
А) Докажите, что угол CKD равен углу KMD.
Б) Найдите сторону AB, зная, что AD = 18, DM = 4.
А) Угол KCD — вписанный в заданную окружность, значит, измеряется половиной градусной меры дуги KM. А угол MKD образован хордой KM этой же окружности и касательной KD к той же окружности, и он измеряется половиной градусной меры дуги KM, заключенной между хордой и касательной. Значит, ∠KCD = ∠MKD. Но эти два угла есть острые углы двух прямоугольных треугольников KCD и MKD. Тогда обязаны быть равными и другие острые углы названных треугольников, т. е. ∠CKD = ∠KMD, что и требовалась доказать.
Б) Из полученного равенства ∠CKD = ∠KMD следует подобие: ΔMKD ~ ΔKCD, откуда:
Пусть R — радиус заданной окружности, O — ее центр, F ∈ CM, OF ⊥ CM. Пусть E ∈ AB, OE ⊥ AB.
Соединим точки O и K, O и E отрезками , тогда OK = OE = R. Кроме того, OK ⊥ KD. OE || AK как два перпендикуляра к AB. По аналогичной причине Следовательно, AEOK — параллелограмм, откуда AE = OK = R. Но AE = AK как отрезки касательных к окружности, проведенных из точки А. Следовательно, AK = AE = R. В таком случае KD = 18 − R.
Рассмотрим OE и OF как два перпендикуляра, проведенные из одной и той же точки О к параллельным прямым AB и CD, лежат на одной прямой. Тогда AEFD — прямоугольник, откуда: FD = AE = R.
Пусть CD = x, тогда CM = CD − MD = x − 4.
Треугольник COM — равнобедренный, в нем OF — высота по построению, следовательно, OF — медиана.
Отсюда:
Это — с одной стороны. С другой же стороны, CF = CD − FD = x − R. Значит,
Так как KD = 18 − R, то в соответствии с равенствами (*) и (**) будем иметь:
Значение R = 34 не подходит по смыслу задачи, так как KD = 18 − R > 0.
При R = 10: AB = CD = x = 2R − 4 = 20 − 4 = 16.
Ответ: 16.

