Точка M лежит на диаметре AB окружности с центром О. С и D — точки окружности, расположенные по одну сторону от AB, причем ∠CMA = ∠DMB.
а) Докажите, что ∠OCM = ∠ODM.
б) Найдите площадь четырехугольника COMD, если известно, что OM = 4, BM = 2, ∠CMA = ∠DMB = 45°.
а) Продолжим отрезок DM за точку M до пересечения с окружностью в точке P (см. рис.) Соединим центр окружности — точку О, с точками P и С — отрезками. ∠DMB = ∠OMP как вертикальные, ∠DMB = ∠CMO по условию, следовательно, ∠OMP = ∠OMC.
Любая окружность симметрична сама себе относительно всякой прямой, проходящей через ее центр.
Рассмотрим симметрию относительно диаметра AB. При этом:
– точки А, О, M и В, отрезок OM перейдут сами на себя;
– поскольку ∠OMP = ∠M, луч МС MP перейдет на луч MP;
– полуокружность ACB перейдет на полуокружность APB, общая точка луча МС и полуокружности ACB перейдет в общую точку луча MP и полуокружности APB, т. е. точка С перейдет в точку P;
– отрезок ОС перейдет на отрезок OP, ∠OCM — на ∠ OPM. Следовательно, ∠ OCM = ∠OPM.
Но Δ POD — равнобедренный, поскольку OP = OD как радиусы одной и той же окружности. Значит, ∠OPM = ∠ODM. Отсюда: ∠OCM = ∠ODM, что и требовалось доказать.
б) Найдём угол CMD:
В Δ OMD: ∠OMD = 135°, по теореме косинусов:
Найдем положительный корень этого уравнения.
В Δ COM по теореме косинусов:
Положительный корень этого уравнения будет равен
Приведём другое решение:
а) Продолжим DM до пересечения с окружностью в точке N (см. рис.). Соединим центр окружности — точку О с точкой С — отрезком. Опустим из точки О перпендикуляры к отрезкам СМ и DN, основания перпендикуляров обозначим H и T соответственно. Обозначим некоторые углы, ∠1, ∠2 и ∠3, как показано на рисунке.
∠2 = ∠3 как вертикальные, ∠2 = ∠1 по условию, следовательно, ∠1 = ∠3. Прямоугольные треугольники MHO и MTO равны по общей гипотенузе ОМ и острому углу (∠1 = ∠3), откуда OH = OT.
Рассмотрим прямоугольные треугольники OHC и OTD. Они равны по гипотенузе и катету, поскольку OH = OT по только что доказанному, OC = OD как радиусы одной и той же окружности. Отсюда: ∠OCM = ∠ODM, что и требовалось доказать.
б) По условию и доказанному выше: ∠2 = ∠1 = ∠3 = 45°. Следовательно, ∠MD = 180° − (45° + 45°) = 90°. ∠HOM = 90° − 45° = 45°. Значит, OH = MH. Аналогично OT = MT. Из совокупности полученных результатов имеем: OHMT — квадрат.
В Δ SMD, где ∠SMD = 90°,
Ответ: б)

