Задания
Версия для печати и копирования в MS Word
Тип 13 № 510687
i

а)  Ре­ши­те урав­не­ние  минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка умно­жить на синус x= ко­си­нус x.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби ,6 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  В силу не­чет­но­сти и пе­ри­о­дич­но­сти си­ну­са имеем:

 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка 2 Пи плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x.

Далее имеем:

 ко­рень из 2 ко­си­нус x умно­жить на синус x = ко­си­нус x рав­но­силь­но ко­си­нус x левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та умно­жить на синус x минус 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x =0, синус x = дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, x = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, x= дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти k при­над­ле­жит Z . .

 

б)  При по­мо­щи чис­ло­вой пря­мой или три­го­но­мет­ри­че­ской окруж­но­сти (см. рис.) для каж­дой из за­да­ю­щих ре­ше­ния серий от­бе­рем корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 4,5 Пи ;6 Пи пра­вая квад­рат­ная скоб­ка .

На­хо­дим три ре­ше­ния:  дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 19 Пи , зна­ме­на­тель: 4 конец дроби ; 6 Пи минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 2 конец дроби .

 

Ответ:

а)   левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ;

 

б)   дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 19 Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источники: