Основанием прямой призмы ABCA1B1C1 является равнобедренный треугольник ABC, где AB = AC = 5 и BC = 8. Высота призмы равна 3.
а) Докажите, что треугольник A1BC остроугольный.
б) Найдите угол между прямой A1B и плоскостью BCC1.
а) Найдем по теореме Пифагора A1B:
Отсюда
поэтому по теореме косинусов то есть угол BA1C острый. Два других угла треугольника A1BC острые как углы при основании равнобедренного треугольника. Что и требовалось доказать.
б) Поскольку призма ABCA1B1C1 прямая, то высота A1M треугольника A1B1C1 перпендикулярна плоскости BCC1. Поэтому прямая BM — проекция прямой A1B на плоскость BCC1. Значит, искомый угол равен углу A1BM.
и
поэтому BM = 5 и
Отсюда
Следовательно,
Ответ: б)

