СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 4 № 509569

Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Решение.

Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», С = «чайник прослужит ровно два года», тогда A + B + С = «чайник прослужит больше года».

 

События A, В и С несовместные, вероятность их суммы равна сумме вероятностей этих событий. Вероятность события С, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда:

P(A + B+ С) = P(A) + P(B)+ P(С)= P(A) + P(B),

откуда, используя данные из условия, получаем

0,93 = P(A) + 0,87.

Тем самым, для искомой вероятности имеем:

P(A) = 0,93 − 0,87 = 0,06.

 

Ответ: 0,06.

Классификатор базовой части: 6.3.1 Вероятности событий, 6.3.2 Использования вероятностей и статистики при решении прикладных задач
Спрятать решение · Прототип задания · · Видеокурс · Курс Д. Д. Гущина ·
Анна Яковлева 14.01.2019 16:38

Наверно вопрос должен звучать так: Какова вероятность, что чайник прослужит ровно два года.

Александр Иванов

нет