Задания
Версия для печати и копирования в MS WordТочка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
Решение.
Спрятать критерии
а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
Методы геометрии: Теорема косинусов
Классификатор планиметрии: Треугольники

