
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
Решение. а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то
Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б. | 3 |
| Получен обоснованный ответ в пункте б. ИЛИ Имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. | 2 |
| Имеется верное доказательство утверждения пункта а. ИЛИ При обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. ИЛИ Обоснованно получен верный ответ в пункте б и использованием утверждения пункта а, при этом пункт а не выполнен. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 3 |
PDF-версии: