Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто‐то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, считается проигравшим. Начинающий или его соперник победит в этой игре, как бы ни играл партнёр?
Рассмотрите случаи:
а) у каждого по две горошины;
б) у каждого по три горошины;
в) у каждого по N горошин.
а) Первый игрок либо отдаст второму две горошины (на это второй даст ему одну, и у первого не будет ходов), либо отдаст одну. В этом случае второй игрок может отдать ему две горошины, назад получит три, отдаст четыре и победит. Так или иначе выигрывает второй игрок.
б) Если первый игрок отдаст три или две, назад получит одну и сразу проиграет. Если же отдаст одну, то назад получит две. Далее у первого два варианта хода, но оба плохи: отдав 4, он получит назад 3 и проиграет, а отдав 3, получит 4, будет вынужден отдать 5, получит 6 и всё равно проиграет.
в) Победит второй игрок, придерживаясь правила: «всякий раз отдавай минимально возможное число горошин». Докажем, что это действительно выигрышная стратегия. Достаточно показать, что у второго игрока всегда будет ход. Начинает игру у нас первый игрок, но мы схитрим и сделаем так, чтобы игру начинал второй: предположим, что второй (условно) передаёт сначала первому 0 горошин. Теперь можно видеть, что всякий раз в ответ на ход второго первый игрок вынужден будет отдать ему больше, чем сам получил. Поэтому количество горошин у второго с каждым парным ходом будет увеличиваться хотя бы на одну. Перед K-м ходом у него будет не менее N + K горошин. А отдать на K-м ходу он в соответствии со своей стратегией должен не более 2K горошин. Это осуществимо, поскольку более чем N ходов игра длиться не может, а значит N + K ≥ 2K.
Ответ: а) побеждает второй игрок; б) побеждает второй игрок; в) побеждает второй игрок.


при наличии у каждого участника по 2 горошины есть третий вариант хода. первый участник отдаёт 2 горошины, получает 3 (тогда у второго игрока остаётся 1 горошина), сам из своих 3 горошин отдает 1 горошину, и второй участник, имея 2 горошины, не имеет ходов. в таком случае он, второй игрок, проиграл.
Но второй игрок не хочет проиграть.