СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 16 № 505431

Около равнобедренного треугольника ABC с основанием BC описана окружность. Через точку C провели прямую, параллельную стороне AB. Касательная к окружности, проведённая в точке B, пересекает эту прямую в точке K.

а) Докажите, что треугольник BCK — равнобедренный.

б) Найдите отношение площади треугольника ABC к площади треугольника BCK, если

Решение.

а) Угол KBC равен углу BAC как угол между касательной и хордой. Прямые AB и CK параллельны. Следовательно, ∠ABC = ∠BCK. Получаем, что треугольники ABC и BCK подобны. Следовательно,

Значит, треугольник BCK — равнобедренный.

б) Треугольники ABC и BCK подобны, коэффициент подобия равен Отношение площадей В треугольнике ABC имеем:

 

 

Ответ: 2.


Аналоги к заданию № 505431: 511408 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Ва­ри­ант 901.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Окружности и треугольники, Подобие, Свойства касательных, секущих, Теорема косинусов