На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
а) Докажите, что точки A, B, K и E лежат на одной окружности.
б) Найдите радиус этой окружности, если AB = 24, CH = 7.
а) Предположим для определённости, что точка E лежит на катете BC, а точка K — на катете AC. Проведём отрезок KE и заметим, что он является гипотенузой прямоугольного треугольника KCE, равного треугольнику CHE, подобного треугольнику ABC.
Рассмотрим углы четырёхугольника ABEK. Если ∠ABE = α, то
а
Значит,
Сумма двух противоположных углов в четырёхугольнике 180°, следовательно, четырёхугольник вписан в окружность.
б) Радиус окружности, проходящей через точки A, B и E, найдем по теореме синусов:
Из подобия треугольников CEH и ABC находим
откуда
Тогда
Поэтому
Следовательно, искомый радиус
Приведем решение п. б) присланное пользователем сайта.
Продолжим отрезок КН за точку Н и точку его пересечения окружностью назовем Р. Очевидно, следовательно,
Заметим, что
как вписанные, опирающиеся на одну дугу. Значит,
то есть
— прямой. Таким образом,
и CHPB — параллелограмм, в котором BP = CH = 7, а AP диаметр окружности. Найдем его из прямоугольного треугольника ABP:
Следовательно, искомый радиус
Ответ:

