Задания
Версия для печати и копирования в MS Word
Тип 5 № 319553
i

Если шах­ма­тист А. иг­ра­ет бе­лы­ми фи­гу­ра­ми, то он вы­иг­ры­ва­ет у шах­ма­ти­ста Б. с ве­ро­ят­но­стью 0,56. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Шах­ма­ти­сты А. и Б. иг­ра­ют две пар­тии, причём во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

Спрятать решение

Ре­ше­ние.

Воз­мож­ность вы­иг­рать первую и вто­рую пар­тию не за­ви­сят друг от друга. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию их ве­ро­ят­но­стей: 0,56 · 0,3  =  0,168.

 

Ответ: 0,168.

 

При­ме­ча­ние.

Дру­гой спо­соб ре­ше­ния дан­ной за­да­чи при­ве­ден здесь.


Аналоги к заданию № 319355: 319553 319555 510061 ... Все

Кодификатор ФИПИ/Решу ЕГЭ: 6.3.1 Ве­ро­ят­но­сти со­бы­тий