Задания
Версия для печати и копирования в MS Word
Тип 3 № 75325
i

 

Около куба с реб­ром  ко­рень из: на­ча­ло ар­гу­мен­та: 507 конец ар­гу­мен­та  опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на  Пи .

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Около куба с реб­ром  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на π.

Пусть длина ребра куба равна а, а его диа­го­наль равна d. Ра­ди­ус опи­сан­но­го шара R равен по­ло­ви­не диа­го­на­ли куба:

 R = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби d = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та = дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби .

По­это­му объем шара равен

 V = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби Пи R в кубе = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби Пи левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в кубе = дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби Пи .

Тогда объем шара, де­лен­ный на π, равен

 дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби = 4,5.

Ответ: 4,5.


Аналоги к заданию № 27127: 75321 75323 75325 ... Все

Классификатор стереометрии: Объём ци­лин­дра, ко­ну­са, шара, Опи­сан­ные сферы