Задания
Версия для печати и копирования в MS WordНайдите все значения a, при каждом из которых система
имеет нечётное число различных решений.
Решение.
Спрятать критерииЕсли (x; y) — решение системы, то (y; x) также её решение. Чтобы решений было нечётное число, нужно, чтобы нечётное число решений имело вид (x; x). Для y = x получаем:
откуда находим x = 0, x = 6 или
Если то
если
то
если
то
Для каждого из найденных значений a существует ровно одно решение вида (x; x) найденное выше. Все остальные решения, если они есть, будут иметь вид (x; y), где
значит, их количество чётно и общее количество решений нечётно.
Ответ:
и
Классификатор алгебры: Системы с параметром

