Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Задания
i

На сто­ро­нах AB и AC тре­уголь­ни­ка ABC от­ме­че­ны точки D и E со­от­вет­ствен­но так, что B D плюс C E=B C, точка I  — центр впи­сан­ной окруж­но­сти тре­уголь­ни­ка АВС.

а)  До­ка­жи­те, что точки A, E, I и D лежат на одной окруж­но­сти.

б)  Точка D в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка сим­мет­рич­на точке D от­но­си­тель­но пря­мой AI. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти тре­уголь­ни­ка E D D в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка , если  D в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка E=2, а ра­ди­ус впи­сан­ной окруж­но­сти тре­уголь­ни­ка АВС равен  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби .