Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та минус левая круг­лая скоб­ка 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка синус x конец ар­гу­мен­та =2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та .

б)  Най­ди­те все корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 0 пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пра­вая часть урав­не­ния не­от­ри­ца­тель­на, если  синус x боль­ше или равно дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби . При таких зна­че­ни­ях пе­ре­мен­ной обе части, воз­во­дя обе части урав­не­ния в квад­рат, по­лу­чим рав­но­силь­ное урав­не­ние. Решим его, раз­ло­жив на мно­жи­те­ли:

2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та минус левая круг­лая скоб­ка 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка синус x= левая круг­лая скоб­ка 2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те рав­но­силь­но
 рав­но­силь­но 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та минус левая круг­лая скоб­ка 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка синус x=4 синус в квад­ра­те x минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус x плюс 2 рав­но­силь­но 4 синус в квад­ра­те x плюс 2 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та =0 рав­но­силь­но

 рав­но­силь­но 2 синус x левая круг­лая скоб­ка 2 синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та левая круг­лая скоб­ка 2 синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =0 рав­но­силь­но левая круг­лая скоб­ка 2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =0 рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний 2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та =0, 2 синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та =0 конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та }2, синус x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та }2 конец со­во­куп­но­сти . \underset{ синус x боль­ше или равно дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2, зна­ме­на­тель: , конец дроби зна­ме­на­тель: 2 конец дроби , зна­ме­на­тель: \mathop{ рав­но­силь­но конец ар­гу­мен­та конец дроби синус x = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3, зна­ме­на­тель: конец ар­гу­мен­та конец дроби 2 рав­но­силь­но со­во­куп­ность вы­ра­же­ний x = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, x= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти .k при­над­ле­жит Z .

б)  От­бе­рем корни при по­мо­щи три­го­но­мет­ри­че­ской окруж­но­сти (см. рис.). На за­дан­ном от­рез­ке дежит ко­рень  минус дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б)

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 423
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа, Ир­ра­ци­о­наль­ные урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Воз­ве­де­ние в квад­рат с учётом ОДЗ, Раз­ло­же­ние на мно­жи­те­ли