
Функция
определена и непрерывна на полуинтервале
На рисунке изображен график её производной. Найдите промежутки возрастания функции
В ответе укажите сумму целых точек, входящих в эти промежутки.
Решение. Промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых её производная неотрицательна, то есть интервалу (−1; 5). В силу непрерывности функция f(x) возрастает на полуинтервале [−1; 5). Данный промежуток содержит целые точки −1, 0, 1, 2, 3 и 4. Их сумма равна 9.
Ответ: 9.
Примечание.
Включение в промежуток точки не является ошибкой.
Напомним, что если функция непрерывна на каком-либо из концов промежутка возрастания или убывания, то граничную точку присоединяют к этому промежутку. В частности, если функция непрерывна на отрезке и монотонна на интервале
то функция монотонна на всем отрезке
Обобщением этого утверждения служит следующая теорема: функция монотонна на промежутке, если ее производная сохраняет знак всюду на этом промежутке, за исключением конечного числа точек, в которых функция непрерывна. Например, производная функции
не существует в точке и положительна во всех остальных точках. Функция f в точке
непрерывна, следовательно, она возрастает на
Рекомендуем сравнить данную задачу с задачами 551780 и 551782 и обратить внимание на границы промежутка задания функции.
PDF-версии: