
В треугольнике ABC угол A равен 120° . Прямые, содержащие высоты BM и CN треугольника ABC, пересекаются в точке H. Точка O — центр окружности, описанной около треугольника ABC.
а) Докажите, что AH = AO.
б) Найдите площадь треугольника AHO, если BC = 3,
Решение. а) По теореме синусов имеем:
Четырехугольник MHNA вписан в окружность с диаметром AH, тогда по теореме синусов для треугольника MNA имеем:
Треугольники MAN и BAC подобны, поскольку
тогда Подставляя, получаем:
б) По теореме о вписанном угле Тогда
Найдем площадь треугольника:
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: