
В правильном тетраэдре ABCD точка К — середина ребра АВ, точка Е лежит на ребре CD и EC : ED = 1 : 2.
а) Найдите угол между прямыми ВС и КЕ.
б) Найдите расстояние между прямыми ВС и КЕ, если ребро тетраэдра равно
Решение. а) Проведем через точку K прямую KL, параллельную BC, где точка L лежит на AC. KL — средняя линия треугольника ABC. Угол между прямыми KE и ВС равен углу EKL, найдем его из треугольника KEL. Пусть O — проекция вершины D, E' — проекция точки E на прямую KC и пусть ребро тетраэдра равно a. Тогда
откуда
Вычислим высоту тетраэдра:
а значит,
Косинус угла EKL найдем, применяя теорему косинусов:
Таким образом,
б) Расстояние между скрещивающимися прямыми равно расстоянию от одной из них до плоскости, параллельной ей и проходящей через другую прямую. Таким образом, искомое расстояние между прямыми BC и KE равно расстоянию между точкой С и и плоскостью KEL (плоскость KEL — проходит через прямые KE и KL, где прямая KL параллельна BC). То есть искомое расстояние — высота hc тетраэдра CKEL, проведенная из вершины C.
Вычислим объем тетраэдра CKEL:
С другой стороны, где
Итак,
Ответ: а) б)
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: