В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
а) Пусть в школе № 1 писали тест 2 учащихся, один из них набрал 1 балл, а второй набрал 19 баллов и перешёл в школу № 2. Тогда средний балл в школе № 1 уменьшился
б) Пусть в школе № 2 писали тест m учащихся, средний балл равнялся B, а перешедший в неё учащийся набрал u баллов. Тогда получаем:
Если то
не делится на 10, а 10u делится на 10. Но это невозможно, поскольку
в) Пусть в школе № 1 средний балл равнялся A. Тогда получаем:
Заметим, что если или
то
не делится на 10. Если
или
то
В первом случае
а во втором
Значит, ни один из этих случаев не возможен.
При и
получаем
и
Этот случай реализуется, например, если в школе № 1 писали тест 6 учащихся, 3 из них набрали по
Ответ: а) да; б) нет; в) 5.

