СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 19 № 521312

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?

б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?

в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Решение.

а) Пусть в школе № 1 писали тест 2 учащихся, один из них набрал 1 балл, а второй набрал 19 баллов и перешёл в школу № 2. Тогда средний балл в школе № 1 уменьшился в 10 раз.

б) Пусть в школе № 2 писали тест m учащихся, средний балл равнялся B, а перешедший в неё учащийся набрал u баллов. Тогда получаем:

Если то не делится на 10, а 10u делится на 10. Но это невозможно, поскольку

в) Пусть в школе № 1 средний балл равнялся A. Тогда получаем:

Заметим, что если или то не делится на 10. Если или то В первом случае а во втором Значит, ни один из этих случаев не возможен.

При и получаем и Этот случай реализуется, например, если в школе № 1 писали тест 6 учащихся, 3 из них набрали по 1 баллу, а 3 — по 3 балла, в школе № 2 писали тест 3 учащихся и каждый набрал по 5 баллов, а у перешедшего из одной школы в другую учащегося — 3 балла.

 

Ответ: а) да; б) нет; в) 5.

Источник: Демонстрационная версия ЕГЭ—2019 по математике. Профильный уровень., Демонстрационная версия ЕГЭ—2020 по математике. Профильный уровень.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства