Тип Д12 C3 № 521140

Классификатор алгебры: Неравенства с логарифмами по переменному основанию
Методы алгебры: Рационализация неравенств
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов
Сложные неравенства. Неравенства различных типов
i
Решите неравенство
Решение. Сразу отметим, что
Поэтому
Перейдем к основанию 2 и рационализируем неравенство:
Далее:
Уберем множители, которые положительны (у нас ):
Применяя метод интервалов, получаем Учитывая ограничения, получим:
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ. | 3 |
| Обоснованно получены верные ответы в обоих неравенствах исходной системы. | 2 |
| Обоснованно получен верный ответ в одном неравенстве исходной системы. ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения системы неравенств. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 3 |
Ответ: 
521140
Классификатор алгебры: Неравенства с логарифмами по переменному основанию
Методы алгебры: Рационализация неравенств
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов
PDF-версии: