В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали не меньше двух учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом, причем в школе № 1 средний балл равнялся 18. Один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах. В результате средний балл в школе № 1 вырос на 10%.
а) Сколько учащихся могло писать тест в школе № 1 изначально?
б) В школе № 1 все писавшие тест набрали разное количество баллов. Какое наибольшее количество баллов мог набрать учащийся этой школы?
в) Известно, что изначально в школе № 2 писали тест более 10 учащихся и после перехода одного учащегося в эту школу и пересчета баллов средний балл в школе № 2 также вырос на 10%. Какое наименьшее количество учащихся могло писать тест в школе № 2 изначально?
PDF-версии: 