
Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что
б) Найдите отношение CE : KE, если
Решение. а) В треугольниках CKD и CDE угол KCD — общий,
Значит, эти треугольники подобны, откуда
б) В треугольнике CKD имеем:
откуда
Из подобия треугольников CKD и CDE получаем:
В треугольнике CKD из теоремы синусов для треугольника CDE имеем:
то есть откуда CE : KE = 3 : 1.
Ответ: б) 3 : 1.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: