
Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что
а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OIH, если
Решение. Точка O — центр описанной окружности около треугольника ABC, поэтому
Значит,
Найдём угол BIC:
Значит, поэтому точки B, O, I и C лежат на одной окружности.
б) Найдём угол BHC:
Значит, поэтому точки B, O, I, H и C лежат на одной окружности.
Поскольку получаем
В равнобедренном треугольнике BOC имеем
Прямая BH перпендикулярна AC, поэтому
Значит, Биссектриса угла треугольника лежит внутри угла, образованного медианой и высотой, исходящими из той же вершины, поэтому лучи BH, BI и BO пересекают дугу окружности в указанном на рисунке порядке. Четырёхугольник BOIH вписан в окружность, поэтому
Ответ: б) 175°.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: