i
Окружность ω1 с центром O1 и окружность ω2 с центром O2 касаются внешним образом. Из точки O1 к ω2 проведена касательная O1A, а из точки O2 к ω1 проведена касательная O1B (А и В — точки касания).
А) Докажите, что углы O1AB и O1O2B равны.
Б) Найдите площадь четырехугольника O1O2AB, если известно, что точки касания А и В лежат по одну сторону от прямой O1O2, а радиусы окружностей равны соответственно 2 и 3.
PDF-версии: 