Тип Д12 C3 № 511838

Классификатор алгебры: Иррациональные неравенства, Неравенства с логарифмами по переменному основанию, Неравенства смешанного типа, Неравенства, рациональные относительно логарифмической функции
Методы алгебры: Введение замены
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов
Сложные неравенства. Неравенства различных типов
i
Решите неравенство
Решение. Ограничения на x:
Кроме того,
Пусть тогда:
Прежде решим уравнение: т. е.
Далее при
имеем:
Перейдя к переменной x, получим:
Так как при
то последнее неравенство равносильно неравенству
С учетом ограничений на x:
Мы получили другую часть решений неравенства.
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ. | 3 |
| Обоснованно получены верные ответы в обоих неравенствах исходной системы. | 2 |
| Обоснованно получен верный ответ в одном неравенстве исходной системы. ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения системы неравенств. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 3 |
Ответ: 
511838
Классификатор алгебры: Иррациональные неравенства, Неравенства с логарифмами по переменному основанию, Неравенства смешанного типа, Неравенства, рациональные относительно логарифмической функции
Методы алгебры: Введение замены
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов
PDF-версии: