
Стороны KM и MN треугольника KMN равны соответственно 30 и 25, а его высота MH равна 24. Найдите расстояние между центрами окружностей, вписанных в треугольники KMH и MNH.
Решение. Пусть точки O и P ― центры окружностей, вписанных в треугольники KMH и MNH соответственно, R и r ― радиусы этих окружностей, а точки E и F ― точки, в которых окружности касаются отрезка MH. Из прямоугольных треугольников KMH и MNH находим:
Опустим из точки O перпендикуляр OQ на прямую FP (см. рис. 1, 2). Искомое расстояние OP находим из прямоугольного треугольника
Первый случай. Точка H лежит между точками K и N, см. рис. 1.
Второй случай. Точка N лежит между точками K и H, см. рис. 2.
Ответ: или
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Рассмотрены все возможные геометрические конфигурации, и получен правильный ответ | 3 |
| Рассмотрена хотя бы одна возможная конфигурация, для которой получено правильное значение искомой величины или рассмотрены все возможные геометрические конфигурации, но получен неправильный ответ из-за одной арифметической ошибки (описки) | 2 |
| Рассмотрена хотя бы одна возможная геометрическая конфигурация, в которой получено значение искомой величины, неправильное из-за арифметической ошибки (описки) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 3 |
PDF-версии: