Радиус основания конуса равен 6, а его высота равна 8. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 4.
а) Докажите, что сечение является равнобедренным остроугольным треугольником.
б) Найдите расстояние от центра основания конуса до плоскости сечения.
Решение. а) Сечение конуса плоскостью, содержащей его вершину S и хорду AB = 4, — треугольник ASB.
Две стороны сечения — это образующие конуса. Они равны, поэтому треугольник SAB равнобедренный. В равных прямоугольных треугольниках SOA и SOB, где O — центр основания конуса, OA = OB = 6, SO = 8, откуда
Тогда в треугольнике SAB угол S наименьший (поскольку лежит против меньшей стороны), а следовательно, острый. Два других угла равны между собой, поэтому тоже острые. Таким образом, треугольник SAB остроугольный.
б) Пусть SH — высота и медиана равнобедренного треугольника ASB, Тогда отрезок OH — высота и медиана равнобедренного треугольника AOB,
Прямые SH и OH перпендикулярны прямой AB, поэтому плоскость SOH перпендикулярна плоскости ASB. Следовательно, расстояние от точки O до плоскости ASB равно высоте OM прямоугольного треугольника SOH, проведённой к гипотенузе:
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта а), и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а), и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а), ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: 