Тип 18 № 510097

Методы алгебры: Использование симметрий, оценок, монотонности, Использование симметрий, оценок, монотонности
Задача с параметром. Использование монотонности, оценок
i
Найдите все значения a, при каждом из которых система уравнений
имеет ровно два различных решения.
Решение. Заметим, что
Поэтому исходная система равносильна смешанной системе
Полученная смешанная система имеет ровно два решения в том и только в том случае, когда семейство прямых имеет с графиком системы
ровно две общие точки, то есть при
----------
Дублирует задание 509206.
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен правильный ответ. | 4 |
| Найдено множество значений a, корни, соответствующие единственному значению параметра не определены ИЛИ Найдены корни, но в множество значений a не включены одна или две граничные точки. | 3 |
| Найдено множество значений a, но не включены одна или две граничные точки. Корни, соответствующие единственному значению параметра не найдены. | 2 |
| Верно найдена хотя бы одна граничная точка искомого множества значений a | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
PDF-версии: