i
Пусть О — точка пересечения диагоналей выпуклого четырехугольника ABCD. Периметры треугольников AOB, BOC, COD и DOА равны между собой.
А) Докажите, что в четырехугольник ABCD можно вписать окружность.
Б) Найдите радиус окружности, вписанной в треугольник DOA, если радиусы окружностей, вписанных в треугольники AOB, BOC и COD равны соответственно 3, 4 и 6.

получаем
поэтому в четырехугольник ABCD можно вписать окружность.
(*). Пусть p — полупериметр каждого из данных треугольников, тогда из (*) получаем:
откуда находим искомый радиус:
(Известное свойство (*) нетрудно доказать, пользуясь тем, что площадь каждого из треугольников равна половине произведения сторон на синус заключенного между ними угла.) 


