Тип Д12 C3 № 508097

Классификатор алгебры: Неравенства с модулями
Сложные неравенства. Неравенства различных типов
i
Решите неравенство
Решение. Последовательно получаем:
Заметим, что при всех значениях x, поскольку
Следовательно,
Итак, искомые значения x:
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ. | 3 |
| Обоснованно получены верные ответы в обоих неравенствах исходной системы. | 2 |
| Обоснованно получен верный ответ в одном неравенстве исходной системы. ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения системы неравенств. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 3 |
Ответ: 
508097
Классификатор алгебры: Неравенства с модулями
PDF-версии: