
В прямой круговой конус вписан шар. Отношение площади полной поверхности конуса к площади поверхности шара равно 49 : 12. Найти отношение удвоенного объем шара к объему конуса.
Решение. Пусть
— осевое сечение конуса, О — центр шара, вписанного в этот конус, E — точка касания шара и конуса.
Из условия задачи следует, что — равнобедренный (AB = BC). Очевидно, что точка О лежит на биссектрисе
которая также служит медианой и высотой
Введем обозначения:
l — образующая конуса (отрезки AB и BC); R — радиус основания конуса (отрезок AD); H — высота конуса (отрезок BD); r — радиус шара (отрезок OE); — площадь сферы (площадь поверхности шара);
— полная поверхность конуса;
— объем шара;
— объем конуса.
Очевидно, что Рассмотрим прямоугольные треугольники BEO и BDA с общим острым углом OBE.
Отсюда:
т. е.
Найдем отношение объема шара к объему конуса:
Теперь найдем отношение площади поверхности шара к площади полной поверхности конуса:
Однако, оказалось, что Значит,
Поскольку нам требуется найти отношение удвоенного объема шара к объему заданного конуса, то таким отношением будет 24 : 49.
Ответ: 24 : 49.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ. | 2 |
| Решение содержит обоснованный переход к планиметрической задаче, но получен неверный ответ или решение не закончено ИЛИ при правильном ответе решение недостаточно обосновано. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
PDF-версии: