
Биссектриса CD угла ACB при основании равнобедренного треугольника ABC (AB = AC) делит сторону AB так, что AD = BC = 2.
а) Докажите, что CD = BC.
б) Найдите площадь треугольника ABC.
Решение. а) По свойству биссектрисы получим:
Воспользуемся теоремой синусов для треугольника ABC:
Осталось по теореме косинусов найти CD из треугольника BCD:
Таким образом, CD = BC = 2. Что и требовалось доказать.
б) Найдем площадь треугольника по формуле Герона:
Ответ:
Примечание: в данной задаче получилось, что ADC равнобедренный, откуда откуда
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б. | 3 |
| Получен обоснованный ответ в пункте б. ИЛИ Имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. | 2 |
| Имеется верное доказательство утверждения пункта а. ИЛИ При обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. ИЛИ Обоснованно получен верный ответ в пункте б и использованием утверждения пункта а, при этом пункт а не выполнен. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 3 |
PDF-версии: