
В усеченный конус, образующая которого наклонена под углом 45 градусов к нижнему основанию, вписан шар. Найти отношение величины боковой поверхности усеченного конуса к величине поверхности шара.
Решение. Рассмотрим осевое сечение конуса. В нем получится трапеция ABCD,
в которую вписана окружность. Проведем высоты BG и CH из точек B и C. Тогда
кроме того из описанности
поэтому
Радиус окружности (он же радиус вписанной в конус сферы) равен Тогда площадь сферы составляет
Достроим теперь усеченный конус до конуса. Трапеция при этом достроится до треугольника, он будет прямоугольный и равнобедренный, поэтому его катеты составят Это образующая конуса. Из нее
— добавленный кусок.
Поэтому площадь боковой поверхности усеченного конуса будет
Поэтому искомое отношение равно 2.
Ответ: 2.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ. | 2 |
| Решение содержит обоснованный переход к планиметрической задаче, но получен неверный ответ или решение не закончено ИЛИ при правильном ответе решение недостаточно обосновано. | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
PDF-версии: