Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Задания
i

На сайте про­во­дит­ся опрос, кого из фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста  — доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округ­лен­ная до це­ло­го числа. На­при­мер, числа 9,3, 10,5 и 12,7 округ­ля­ют­ся до 9, 11 и 13 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 13 по­се­ти­те­лей сайта. Го­ло­са рас­пре­де­ли­лись так, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста стал рав­ным 31. Затем Вася про­го­ло­со­вал за этого фут­бо­ли­ста. Каков те­перь рей­тинг фут­бо­ли­ста с учётом го­ло­са Васи?

б)  Го­ло­са рас­пре­де­ля­ют между двумя фут­бо­ли­ста­ми. Может ли сум­мар­ный рей­тинг быть боль­ше 100?

в)  На сайте отоб­ра­жа­лось, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста равен 7. После того как Вася отдал свой голос за этого фут­бо­ли­ста, рей­тинг стал равен 9. При каком наи­боль­шем числе от­дан­ных за всех фут­бо­ли­стов го­ло­сов, вклю­чая Васин голос, такое воз­мож­но?