Задания
Версия для печати и копирования в MS Word
Тип 13 № 501984
i

а)  Ре­ши­те урав­не­ние 15 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 5 Пи , дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем ис­ход­ное урав­не­ние:

3 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка рав­но­силь­но 5 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка рав­но­силь­но ко­си­нус x = синус x рав­но­силь­но

 рав­но­силь­но тан­генс x=1 рав­но­силь­но x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти от­бе­рем корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 5 Пи , дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка . По­лу­чим числа:  дробь: чис­ли­тель: 21 Пи , зна­ме­на­тель: 4 конец дроби , дробь: чис­ли­тель: 25 Пи , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 21 Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 25 Пи , зна­ме­на­тель: 4 конец дроби .

----------

Дуб­ли­ру­ет за­да­ние 501689.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источники: