Тип 13 № 501548 

Классификатор алгебры: Основное тригонометрическое тождество и его следствия, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители, Тригонометрические уравнения, сводимые к целым на синус или косинус
Методы алгебры: Замена переменной
Уравнения. Тригонометрические уравнения, исследование ОДЗ
i
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
Решение. а) Левая часть уравнения определена, если
и
При этом
Поэтому уравнение можно переписать в виде
Решив последнее уравнение как квадратное относительно получим
или
Значит, либо
откуда
либо что невозможно в силу условия
б) Отберем с помощью единичной окружности отберём корни, принадлежащие промежутку
Ответ: а) б)
Приведём другое решение.
а) ##
б) ##
Отрезку принадлежит корень
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б) 
501548
а)
б) 
Классификатор алгебры: Основное тригонометрическое тождество и его следствия, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители, Тригонометрические уравнения, сводимые к целым на синус или косинус
Методы алгебры: Замена переменной
PDF-версии: