Ниже представлены ученические решения экзаменационных заданий. Оцените каждое из них в соответствии с критериями проверки заданий ЕГЭ. После нажатия кнопки «Проверить» вы узнаете правильный балл за каждое из решений. В конце будут подведены итоги.
Задание 501989
Задание 505421
Задание 505539
Задание 505540
Задание 505541
Задание 513112
Задание 515923
Задание 519408
Задание 559547
Задание 559549
Задание № 501989
Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 9, 10, 11, 19, 20, 21, 22, 30, 31, 32, 33, 41, 42, 43, 52.
Решение
а) Задуманные числа 2, 2, 2, 2 дают требуемый набор, записанный на доске. Другой вариант: 2, 2, 4.
б) Поскольку задуманные числа натуральные, то наименьшее число в наборе — это наименьшее из задуманных чисел, а наибольшее число в наборе — это сумма всех задуманных чисел. Среди чисел записанного набора должна быть сумма всех чисел, кроме наименьшего, то есть 22 – 1 = 21. Но этого числа нет в наборе, поэтому не существует примера таких задуманных чисел, для которого на доске будет выписан набор из условия.
в) Число 9 — наименьшее число в наборе — является наименьшим из задуманных чисел, а наибольшее число в наборе — это сумма всех задуманных чисел. Поэтому количество задуманных чисел не превосходит
целой части частного 52 и 9, то есть 5. Кроме того, числа 10 и 11 меньше, чем сумма двух чисел 9, поэтому они также являются задуманными. Значит, сумма оставшихся задуманных чисел равна
Ответ: а) 2, 2, 2, 2 (или 2, 2, 4): б) нет: в) 9, 10, 11, 11, 11 или 9, 10, 11, 22.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Верно выполнены: а), б), впример), воценка) | 4 |
| Верно выполнены три пункта из четырех: а), б), впример), воценка) | 3 |
| Верно выполнены два пункта из четырех: а), б), впример), воценка) | 2 |
| Верно выполнены один пункт из четырех: а), б), впример), воценка) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 4 |
Пример 1.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Пример 3.
Оцените это решение в баллах:
Задание № 505421
Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма оценивают следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания равняться
б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания равняться
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
Решение
Обозначим рейтинг кинофильма, вычисленный по старой системе оценивания, через A, а рейтинг кинофильма, вычисленный по новой системе через B.
а) Заметим, что
где m и n — некоторые натуральные числа. Значит,
Если то
что невозможно. Таким образом, разность рейтингов, вычисленных по старой и новой системам, не может равняться
б) Например, для оценок экспертов 0, 1, 2, 4, 7, 8, 9 разность рейтингов, вычисленных по старой и новой системам оценивания равна
в) Пусть x — наименьшая из оценок, z — наибольшая, а y — сумма остальных пяти оценок. Тогда
Для оценок экспертов 0, 1, 2, 3, 4, 5, 10 разность равна
Значит, наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания, равно
Ответ: а) нет; б) да; в)
Пример 5.
Оцените это решение в баллах:
Задание № 505539
Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 10 раз больше, либо в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 3024.
а) Может ли последовательность состоять из двух членов?
б) Может ли последовательность состоять из трёх членов?
в) Какое наибольшее количество членов может быть в последовательности?
Решение
а) Если последовательность состоит из двух членов, a и (в произвольном порядке), то
Уравнение
не имеет решений в натуральных числах. Поэтому последовательность не может состоять из двух членов.
б) Последовательность может состоять из трёх членов: 252, 2520, 252.
в) Приведём пример последовательности из 549 членов: Сумма её членов равна
Допустим, что в последовательности более чем 549 членов. Разобьём первые 550 членов последовательности на 275 пар соседних членов: первый и второй, третий и четвёртый, пятый и шестой и т. д. Сумма двух членов в каждой паре делится Получили противоречие.
Ответ: а) нет; б) да; в) 549.
Пример 1.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Пример 1.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Пример 3.
Оцените это решение в баллах:
Пример 4.
Оцените это решение в баллах:
Задание № 505540
На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно −18.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?
Решение
Пусть среди написанных чисел k положительных, l отрицательных и m нулей. Сумма набора чисел равна количеству чисел в этом наборе, умноженному на его среднее арифметическое, поэтому
а) Заметим, что в левой части каждое слагаемое делится на 9, поэтому — количество целых чисел — делится на 9. По условию
поэтому
Таким образом, написано 36 чисел.
б) Приведём равенство к виду
Так как получаем, что
откуда
Следовательно, отрицательных чисел больше, чем положительных.
в) (оценка) Подставим в правую часть равенства
откуда
Поскольку получаем:
то есть положительных чисел не более 16.
в) (пример) Приведём пример, когда положительных чисел ровно 16. Пусть на доске 16 раз написано число 9, 18 раз написано число −18 и два раза написан 0.
Тогда
Указанный набор удовлетворяет всем условиям задачи.
Ответ: а) 36; б) отрицательных; в) 16.
Пример 1.
Оцените это решение в баллах:
Пример 1.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Задание № 505541
Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более
от общего числа учащихся группы, посетивших кино.
а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?
б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?
в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов
Решение
а) Если группа состоит из 4 мальчиков, посетивших только театр, 6 мальчиков, посетивших только кино, и 10 девочек, сходивших и в театр, и в кино, то условие задачи выполнено. Значит, в группе из 20 учащихся могло быть 10 мальчиков.
б) Предположим, что мальчиков было 11 или больше. Тогда девочек было 9 или меньше. Театр посетило не более 4 мальчиков, поскольку если бы их было 5 или больше, то доля мальчиков в театре была бы не меньше что больше
Аналогично, кино посетило не более 6 мальчиков, поскольку
но тогда хотя бы один мальчик не посетил ни театра, ни кино, что противоречит условию.
В предыдущем пункте было показано, что в группе из 20 учащихся могло быть 10 мальчиков. Значит, наибольшее количество мальчиков в группе — 10.
в) Предположим, что некоторый мальчик сходил и в театр, и в кино. Если бы вместо него в группе присутствовало два мальчика, один из которых посетил только театр, а другой — только кино, то доля мальчиков и в театре, и в кино осталась бы прежней, а общая доля девочек стала бы меньше. Значит, для оценки наименьшей доли девочек в группе можно считать, что каждый мальчик сходил или только в театр, или только в кино.
Пусть в группе мальчиков, посетивших театр,
мальчиков, посетивших кино, и d девочек. Оценим долю девочек в этой группе. Будем считать, что все девочки ходили и в театр, и в кино, поскольку их доля в группе от этого не изменится, а доля в театре и в кино не уменьшится.
Из условия:
значит, Тогда
поэтому доля девочек в группе:
Если группа состоит из 4 мальчиков, посетивших только театр, 6 мальчиков, посетивших только кино, и 9 девочек, сходивших и в театр, и в кино, то условие задачи выполнено, а доля девочек в группе равна
Ответ: а) да; б) 10;
Пример 1.
Оцените это решение в баллах:
Задание № 513112
Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 1 до 15 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться —
б) Может ли эта разность рейтингов, вычисленных по старой и новой системам оценивания, равняться —
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
Решение
Обозначим рейтинг кинофильма, вычисленный по старой системе оценивания, через A, а рейтинг кинофильма, вычисленный по новой системе оценивания, через B.
а) Заметим, что где m и n — некоторые натуральные числа.
Значит, Если
то
что невозможно.
Таким образом, разность рейтингов, вычисленных по старой и новой системам оценивания, не может равняться
б) Например, для оценок экспертов 1, 2, 4, 5, 6, 7, 9 разность рейтингов, вычисленных по старой и новой системам оценивания, равна
в) Пусть x — наименьшая из оценок, z — наибольшая, а y — сумма остальных пяти оценок. Тогда
Для оценок экспертов 1, 2, 3, 4, 5, 6, 15 разность A − B равна Значит, наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания, равно
Ответ: а) нет; б) да; в)
Пример 1.
Оцените это решение в баллах:
Пример 3.
Оцените это решение в баллах:
Задание № 515923
а) Приведите пример четырёхзначного числа, произведение цифр которого в 14 раз больше суммы цифр этого числа.
б) Существует ли такое четырёхзначное число, произведение цифр которого в 210 раз больше суммы цифр этого числа?
в) Найдите все четырёхзначные числа, произведение цифр которых в 49 раз больше суммы цифр этого числа.
Решение
а) Произведение цифр числа 6723 равно 252, а сумма цифр равна 18, то есть в 14 раз меньше.
б) Предположим, что такое число n существует и a, b, c, d — его цифры. Заметим, что среди этих цифр не может быть нулей, так как иначе их произведение было бы равно нулю. Имеем: abcd = 210(a + b + c + d). Правая часть этого равенства делится на 35, поэтому среди цифр найдётся цифра 5 и цифра 7. Так как при перестановке местами цифр числа n равенство abcd = 210(a + b + c + d) остаётся верным, то без ограничения общности можно считать, что в числе n цифры c и d равны 5 и 7 соответственно. Тогда Получаем противоречие.
в) Предположим, что такое число n существует и a, b, c, d — его цифры. Как и ранее, заметим, что среди этих цифр не может быть нулей, так как иначе их произведение было бы равно нулю. Имеем: abcd = 49(a + b + c + d). Правая часть этого равенства делится на 49, поэтому среди цифр найдутся две цифры 7. Без ограничения общности будем считать, что c = d = 7.
Тогда ab = a + b + 14. Пусть a и b нечётные. Так как произведение двух нечётных чисел нечётно, а их сумма чётна, получаем: правая часть равенства чётна (сумма чётных чисел чётна), а левая — нечётна. Противоречие. Тогда хотя бы одно из чисел кратно 2. Будем считать, что на 2 делиться b.
Если b = 2, то 2a = a + 16, что невозможно. Если b = 4, то 4a = a + 18; a = 6.
Если b = 8, то 8a = a + 22; что невозможно. Число n = 4677 и все числа, получаемые из него перестановкой цифр, удовлетворяют условию задачи. Если b = 6, то 6a = a + 20; a = 4. Этот вариант также получается из предпоследнего перестановкой цифр.
Ответ: а) например, 6723; б) нет; в) Число 4677 и все числа, получаемые из него перестановкой цифр (всего 12 чисел).
Пример 1.
Оцените это решение в баллах:
Пример 2.
Оцените это решение в баллах:
Пример 3.
Оцените это решение в баллах:
Задание № 519408
В последовательности a1, a2,..., an−1, an, состоящей из целых чисел, a1 = 1, an = 235. Сумма любых двух соседних членов последовательности равна 3, 5 или 25.
а) Приведите пример такой последовательности.
б) Может ли такая последовательность состоять из 1000 членов?
в) Из какого наименьшего числа членов может состоять такая последовательность?
Решение
а) Например, последовательность 1, 2, 3, 0, 5, −2, 7, −4, …, 233, −230, 235 удовлетворяет условию задачи (чередуются суммы чисел 3 и 5).
б) Поскольку 3, 5 и 25 — нечётные числа, любые два соседних члена последовательности имеют разную чётность. На нечётных местах должны стоять нечётные числа, а на чётных — чётные. Число 235 нечётное, поэтому оно не может стоять на чётном месте. Значит, последовательность не может состоять из 1000 членов.
в) Рассмотрим три члена последовательности: ak, ak+1, ak+2 (). Поскольку ak + ak+1 ≥ 3, ak+1 + ak+2 ≤ 25, получаем ak+2 ≤ ak+22. В предыдущем пункте было показано, что последовательность должна состоять из нечётного числа членов.
Пусть n = 2m + 1, тогда
an = a2m+1 ≤ a2m-1 + 22 ≤ a2m-3 + 22 · 2 ≤...≤ a1 + 22 · m; 235 ≤ 1 + 22m,
откуда m ≥ 11. Значит, последовательность состоит не менее чем из 23 чисел.
Приведём пример последовательности, удовлетворяющей условию задачи, состоящей из 23 членов:
1, 2, 23, −20, 45, −42, 67, −64, 89, −86, 111, −108, 133, −130, 155, −150, 175, −170, 195, −190, 215, −210, 235.
Ответ: а) например, 1, 2, 3, 0, 5, −2, 7, −4, …, 233, −230, 235; б) нет; в) 23.
Пример 1
Оцените это решение в баллах:
Пример 2
Оцените это решение в баллах:
Задание № 559547
Решение
Пример 1
Оцените это решение в баллах:
Пример 2
Оцените это решение в баллах:
Пример 3
Оцените это решение в баллах:
Пример 4
Оцените это решение в баллах:
Задание № 559549
Решение
Пример 1
Оцените это решение в баллах:
Пример 2
Оцените это решение в баллах:
Наверх
Вернуться на основную страницу «Школы экспертов»