Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Задания
i

На сайте про­во­дит­ся опрос, кого из фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста  — доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округ­лен­ная до це­ло­го числа. На­при­мер, числа 7,2; 9,5 и 11,8 округ­ля­ют­ся до 7; 10 и 12 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 14 по­се­ти­те­лей сайта, и рей­тинг пер­во­го фут­бо­ли­ста стал равен 36. Уви­дев это, Вася отдал свой голос за дру­го­го фут­бо­ли­ста. Чему те­перь равен рей­тинг пер­во­го фут­бо­ли­ста?

б)  Пусть по­се­ти­те­ли сайта от­да­ва­ли го­ло­са за од­но­го из трех фут­бо­ли­стов. Могла ли сумма рей­тин­гов быть боль­ше 100?

в)  На сайте отоб­ра­жа­лось, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста равен 9. Это число не из­ме­ни­лось и после того, как Вася отдал свой голос за этого фут­бо­ли­ста. При каком наи­мень­шем числе от­дан­ных за всех фут­бо­ли­стов го­ло­сов, вклю­чая Васин голос, такое воз­мож­но?