Тип 13 № 652135

Классификатор алгебры: Тригонометрические уравнения, сводимые к целым на синус или косинус
Методы алгебры: Формулы двойного угла, Формулы сложения и вычитания
Уравнения. Тригонометрические уравнения, разные задачи
i
а) Решите уравнение
б) Найдите все корни уравнения, принадлежащие промежутку
Решение. а) Используем формулу косинуса двойного угла, затем — формулу косинуса суммы:
б) Отберем корни при помощи тригонометрической окружности. Подходят:
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 2 |
Ответ: а)
б)

652135
а)
б)

Классификатор алгебры: Тригонометрические уравнения, сводимые к целым на синус или косинус
Методы алгебры: Формулы двойного угла, Формулы сложения и вычитания
PDF-версии: