
В пирамиде ABCD рёбра DA, DB и DC попарно перпендикулярны, а
а) Докажите, что BD = CD.
б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM : MA = DN : NC = 2 : 3. Найдите площадь сечения MNB.
Решение. а) Прямоугольные треугольники ABD и ACD равны, поскольку катет AD общий, а AB = AC. Значит, BD = CD.
б) Найдём боковые рёбра. Треугольник BCD равнобедренный и прямоугольный, поэтому Аналогично AD = 5. Найдём стороны треугольника MNB:
Площадь равнобедренного треугольника MNB равна:
Ответ: б)
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта а), и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а), и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а), ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: