Тип 13 № 641907 

Классификатор алгебры: Уравнения, рациональные относительно тригонометрических функций
Методы алгебры: Введение замены, Формулы приведения
Уравнения. Тригонометрические уравнения, сводимые к квадратным
i
a) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Решение. а) Преобразуем уравнение:
Пусть Получаем
следовательно, y = 1 или y = −2. Значит,
то есть
откуда следует, что
или
то есть
откуда следует, что
или
б) С помощью единичной окружности отберём корни, принадлежащие отрезку Получаем:
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б)

641907
а)
б)

Классификатор алгебры: Уравнения, рациональные относительно тригонометрических функций
Методы алгебры: Введение замены, Формулы приведения
PDF-версии: