
В остроугольном треугольнике ABC провели высоту CC1 и медиану AA1. Оказалось, что точки A, A1, C, C1 лежат на одной окружности.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите площадь треугольника ABC, если AA1 : CC1 = 5 : 4 и A1C1 = 4.
Решение. а) Угол AC1C равен 90°, следовательно, угол AA1C равен 90°, поскольку AC — диаметр окружности. Тогда AA1 — высота и медиана треугольника ABC. Таким образом, отрезки AB и AC равны, что и требовалось доказать.
б) Треугольники ABA1 и CBC1 подобны по двум углам, следовательно, C1A1 — медиана в прямоугольном треугольнике BC1C, поэтому
Вычислим площадь треугольника ABC:
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: