В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писал 51 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 вырасти в два раза?
б) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 1?
в) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Таким образом, суммарный балл уменьшился на
что невозможно, поскольку перешедший учащийся набрал положительное количество баллов, а 



должно делиться на 10, а
не должно быть отрицательным. Получаем
что невозможно, поскольку A целое.
а во втором
Значит, ни один из этих случаев не возможен.
Этот случай реализуется, например, если в школе № 1 писали тест 2 учащихся и набрали 22 и 18 баллов, а в школе № 2 писали тест 49 учащихся и каждый набрал по три балла, а у перешедшего из одной школы в другую учащегося 18 баллов.